Email updates

Keep up to date with the latest news and content from TBioMed and BioMed Central.

Open Access Research

Inclusion of the glucocorticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability

Shakti Gupta, Eric Aslakson*, Brian M Gurbaxani and Suzanne D Vernon

Author Affiliations

Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention, 600 Clifton Rd, MS-A15, Atlanta, Georgia 30333, USA

For all author emails, please log on.

Theoretical Biology and Medical Modelling 2007, 4:8  doi:10.1186/1742-4682-4-8

Published: 14 February 2007

Abstract

Background

The body's primary stress management system is the hypothalamic pituitary adrenal (HPA) axis. The HPA axis responds to physical and mental challenge to maintain homeostasis in part by controlling the body's cortisol level. Dysregulation of the HPA axis is implicated in numerous stress-related diseases.

Results

We developed a structured model of the HPA axis that includes the glucocorticoid receptor (GR). This model incorporates nonlinear kinetics of pituitary GR synthesis. The nonlinear effect arises from the fact that GR homodimerizes after cortisol activation and induces its own synthesis in the pituitary. This homodimerization makes possible two stable steady states (low and high) and one unstable state of cortisol production resulting in bistability of the HPA axis. In this model, low GR concentration represents the normal steady state, and high GR concentration represents a dysregulated steady state. A short stress in the normal steady state produces a small perturbation in the GR concentration that quickly returns to normal levels. Long, repeated stress produces persistent and high GR concentration that does not return to baseline forcing the HPA axis to an alternate steady state. One consequence of increased steady state GR is reduced steady state cortisol, which has been observed in some stress related disorders such as Chronic Fatigue Syndrome (CFS).

Conclusion

Inclusion of pituitary GR expression resulted in a biologically plausible model of HPA axis bistability and hypocortisolism. High GR concentration enhanced cortisol negative feedback on the hypothalamus and forced the HPA axis into an alternative, low cortisol state. This model can be used to explore mechanisms underlying disorders of the HPA axis.